For my medical reblogs

RSS
Wallerian degeneration
The nerve fiber’s neurolemma does not degenerate and remains as a hollow tube. Within 4 days of the injury, the distal end of the portion of the nerve fiber proximal to the lesion sends out sprouts towards those tubes and these sprouts are attracted by growth factors produced by Schwann cells in the tubes. If a sprout reaches the tube, it grows into it and advances about 1 mm per day, eventually reaching and reinnervating the target tissue. If the sprouts cannot reach the tube, for instance because the gap is too wide or scar tissue has formed, surgery can help to guide the sprouts into the tubes. This regeneration is much slower in the spinal cord than in PNS. The crucial difference is that in the CNS, including in the spinal cord, myelin sheaths are produced by oligodendrocytes and not by Schwann cells.

Wallerian degeneration

The nerve fiber’s neurolemma does not degenerate and remains as a hollow tube. Within 4 days of the injury, the distal end of the portion of the nerve fiber proximal to the lesion sends out sprouts towards those tubes and these sprouts are attracted by growth factors produced by Schwann cells in the tubes. If a sprout reaches the tube, it grows into it and advances about 1 mm per day, eventually reaching and reinnervating the target tissue. If the sprouts cannot reach the tube, for instance because the gap is too wide or scar tissue has formed, surgery can help to guide the sprouts into the tubes. This regeneration is much slower in the spinal cord than in PNS. The crucial difference is that in the CNS, including in the spinal cord, myelin sheaths are produced by oligodendrocytes and not by Schwann cells.